
Javascript, SVG

JavaScript?!

• Just another programming language like Java, Python, C++, R, etc.
• “Really” not so much different from Python and Java.

• executes the code line-by-line (Python)
• all variables are declared in a universal data type (Python)
• requires symbols like {, }, ; (Java)

JavaScript?!

• High-level, general purpose language
• Imperative: you write algorithms as step-by-step instructions (lines of

code) using JavaScript’s syntax, and the computer will interpret these
instructions in order to execute the algorithm.

• Interpreted: translates the high-level language into machine language on
the fly at runtime

• Can run in the browser, or on a server (Node.js)

Add JavaScript code to a html document

• The answer is <script> tag. Add the line below in <body> tag.

• You can attach a separate JavaScript file to a html document (similarly to
a CSS). You will learn about it during the in-class exercise today

Multiple ways for vanilla html/css/js

Variable Assignment

• var: globally scoped or function/locally scoped
• Nobody uses var anymore, but you may see it in old code

• let: block scoped
• Can be updated but not re-declared (within its scope)

• const: variables that maintain constant values (cannot change).
• cannot be updated or re-declared

let

const

Arrays

• Similar to Python lists
• Ordered, one-dimensional sequences of values

Objects

• Unordered sequences of key-value pairs

Control Structures

Control Structures
The condition can be any expression that evaluates to a Boolean value.

Control Structures
Ternary: single expression if statement

Loops

Functions

• Named sequences of statements used to abstract code
• (Think python functions)

Arrow Functions

• Named sequences of statements used to abstract code
• (Think python functions)

Manipulate html with JavaScript

• When a html document is up on a web browser, the browser creates a
Document Object Model (DOM)

• DOM is a hierarchical data structure which organizes different html tags,
attributes, and text of the html document

• JavaScript offers a set of methods for DOM
• These methods allow us to access/change different elements,

attributes, and texts on a html document.

DOM
We will learn to use JavaScript to dynamically update the DOM (and therefore, the rendered HTML)

Search html with JS DOM methods

• Multiple ways to search and modify html elements (link)
• by tag name
• by id
• by class name
• by CSS selectors

https://www.w3schools.com/js/js_htmldom_elements.asp

Modify html with JS DOM methods

• Change HTML content
• Change the value of an existing attribute
• Set a new attribute (link)

https://www.w3schools.com/jsref/met_element_setattribute.asp

Scalable Vector Graphics
(SVG)

Scalable Vector Graphics (SVG)

• an XML-based vector image format for two-dimensional graphics with
support for interactivity and animation

• Key features: Resolution-independent, smaller file sizes, easily editable,
and widely supported by modern browsers.

• Compared to regular HTML elements (e.g. <div>’s), it is much easier to
draw shapes

• SVG works well with D3 too, and that is why we are going to use SVG for
all the drawings throughout the course.

Why SVG?

• Scalability: SVG images maintain their quality when scaled, making
them ideal for responsive design.

• Accessibility: SVGs can be easily made accessible for screen readers
and are indexable by search engines.

• Interactivity: SVG elements can be manipulated using CSS and
JavaScript for enhanced user experiences.

• Performance: SVG files are usually smaller than raster images, resulting
in faster load times (though performance suffers if too many SVG
elements on screen).

Basic SVG Elements

• SVG has a lot of elements, just like html.
• For dataviz, we care mostly about the shapes:

• <svg>, <rect>, <circle>, <ellipse>, <line>, <polyline>, <polygon>, <path>,
<text>, <g>

• When we learn D3, we will map our data elements to these shapes,
creating visualizations

Draw a rectangle

• Claim the drawing canvas <svg> in <body>

• Add a <rect>

• x and y - a point (x, y) where the rectangle starts
• width - how far the shape goes towards the right
• height - how far the shape goes towards the bottom

<svg width="500" height="100">
</svg>

<rect x="0" y="0" width="100" height="30"/>

Add a style to the rectangle

• use attributes

• Some commonly used style attributes are listed below.
• fill: A color value. Just as with CSS, colors can be specified as named

colors, hex values, or RGB or RGBA values.
• stroke: A color value.
• stroke-width: A numeric measurement. Typically in pixels.
• opacity: A numeric value between 0.0 (completely transparent) and 1.0

(completely opaque).

<rect x="0" y="0" width="250" height=50"
fill = “yellow” stroke=“green" stroke-width = “3”/>

Beyond Vanilla

Vanilla HTML

• “Vanilla HTML”: Refers to the frontend stack we’ve used so far in this
course:

• HTML
• CSS
• JavaScript

Vanilla HTML

• “Vanilla HTML”: Refers to the frontend stack we’ve used so far in this
course:

• HTML
• CSS
• JavaScript

• Basically everything referenced from some .html file

Limitations of Vanilla HTML

• In traditional HTML development, the DOM and UI updates are tightly
coupled.

• Complex UI interactions and state management become challenging and
error-prone.

• Lack of componentization makes code organization and reuse difficult.

Limitations of Vanilla HTML

• In traditional HTML development, the DOM and UI updates are tightly
coupled.

• When we want to update UI, we often manipulate the DOM directly

Limitations of Vanilla HTML

• This can lead to issues:

1. Manual DOM manipulation can be tedious and error-prone, especially
for complex UIs.

2. Directly updating the DOM can cause unnecessary reflows and
repaints, impacting performance.

3. Keeping track of UI changes and managing the state of the application
can be challenging.

Limitations of Vanilla HTML

• Complex UI interactions and state management become challenging
and error-prone.

• As web applications become more sophisticated, handling complex UI
interactions and managing application state becomes increasingly
challenging. With vanilla HTML and JavaScript, developers often end up
writing extensive and convoluted code to manage these complexities.

Limitations of Vanilla HTML

• This can lead to issues:

1. Callback hell: In a callback-based architecture, managing multiple
asynchronous operations can result in deeply nested and hard-to-read
code.

2. Inconsistent UI updates: Manually handling UI updates based on
application state changes can easily lead to inconsistencies and
synchronization issues.

3. Difficulty Debugging tightly coupled UI & sate management

Limitations of Vanilla HTML

• Lack of componentization makes code organization and reuse difficult
• Vanilla HTML lacks built-in mechanisms for code organization and reuse:

Limitations of Vanilla HTML

• This can lead to issues:

1. UI elements and logic tend to be tightly coupled and scattered
throughout the codebase.

2. Code duplication becomes common, leading to maintenance
challenges and increased chances of introducing bugs.

3. Reusing UI elements or sections across different pages or components
requires manual copying and pasting of code

Solution

• Frameworks: pre-written libraries that provide a structured and
standardized way to build web applications, offering a set of tools and
abstractions to simplify and streamline the development process

Solution

• Frameworks: pre-written libraries that provide a structured and
standardized way to build web applications, offering a set of tools and
abstractions to simplify and streamline the development process

• Examples: React, Svelte, Vue, etc.

New Development
Environments

Beyond Vanilla

• As we move away from vanilla html and towards frameworks, we will be
using mostly (if not entirely) JavaScript.

• Thus, we’ll need more tools to manage typical programming tasks:
• Package management
• Dependency management
• Server-side execution
• Development tooling
• etc.

Beyond Vanilla

• Basically, we’re going to be using JavaScript like most of you are used to
using Python: as a programming language with all kinds of concerns
around developer workflow and tooling.

• Let’s go over some new tools

Node.js

• Node.js: a JavaScript runtime environment that allows developers to
execute JavaScript code outside of a web browser. It is used for server-
side scripting, command-line tools, and building scalable network
applications, providing a runtime environment for executing JavaScript
code on the server and enabling developers to leverage JavaScript's
versatility beyond the client-side web development.

npm: Node Package Manager

• npm: a package manager for JavaScript that comes bundled with Node.js.
It is used to discover, install, manage, and share reusable code packages
and libraries (think of Python’s pip)

Babel

• Babel: a JavaScript compiler that transforms modern JavaScript code into
an older, widely supported version, allowing developers to write using the
latest language features while ensuring compatibility across different
environments.

ESLint

• ESLint: A popular linter tool that helps enforce code quality and
consistency by identifying and reporting coding errors, potential bugs,
and style violations.

Bundlers

• Bundlers: tools that combine and optimize multiple modules or files into a
single bundle, enabling efficient delivery and execution of code in web
applications.

• Our JS projects will have lots of files, and bundlers make sure they are
optimized to load on web-pages (minimized, tree-shaken, babel, etc.)

Bundlers

• Many bundlers exist!
• The most popular is (was) webpack, but it’s pretty confusing.
• I prefer vite, which is new and super fast
• Parcel is another great choice if you’re new, because it abstracts a lot of

annoying config away

Our New Dev Environment

cli

• Modern web-dev feels much more like writing python than writing html
files.

• We’ll kick everything off from the command line.

cli

• Modern web-dev feels much more like writing python than writing html
files.

• We’ll kick everything off from the command line.

cli

• We can follow the options and set up a React project here

cli

• We can follow the options and set up a React project here

cli

• We’ll go over React soon, but let’s look at what we get/do

package.json

• package.json: a manifest for a JavaScript project, listing its
dependencies, defining project details, and providing scripts for various
development tasks.

package.json

Other tools

• Static typing, css frameworks, meta-frameworks, etc.
• JavaScript Fatigue

